(+)-2,5-DIEPI-β-CEDRENE, A NEW SESQUITERPENE FROM SCIADOPITYS VERTICILLATA SIEB. ET ZUCC. Torbjörn Norin and Stefen Sundin

Department of Organic Chemistry, Wood Chemistry Laboratory, Royal Institute of Technology, S-100 44 Stockholm, Sweden

Bengt Karlsson, Peder Kierkegaard, Anne-Mari Pilotti, and Anne-Charlotte Wiehager Institute of Inorganic and Physical Chemistry, University of Stockholm,

S-104 05 Stockholm, Sweden

(served in UV () Towerber 1972; accepted for publication 30 November 1972)

The wood extractives of *Sciadopitys verticillata* Sieb. et Zucc. (Cupressaceae) have previously been studied in some detail.¹⁻⁴ The low boiling neutral constituents have now been further investigated and we wish to report the isolation and structure determination of a new sesquiterpene hydrocarbon, (+)-2,5-diepi- β -cedrene (I).

The low-boiling neutral part of a light petroleum soluble extract of the wood was fractionally distilled at low pressure. The fraction (about 0.2 % of the dry wood), b.p. $96-97^{\circ}$ (4 mm Hg) was found to contain a mixture of (-)- α -cedrene (traces), (+)- β -cedrene and a new sesquiterpene (GLC, 2 % Apiezon L, 0.05 % Igepal and 0.05 % stearic acid on 80/100 Chromosorb G at 175°, rel. retention times 1.00, 1.05 and 0.96, respectively: TLC, 10 % AgNO₃ on Silica gel, 2 % ether in light petroleum, R_F 0.75, 0.35 and 0.45, respectively).

The three compounds were separated by argentation column chromatography and the $(-)-\alpha-$ and $(+)-\beta$ -cedrenes identified by comparison with authentic samples. The new sesquiterpene $C_{15}H_{24}$ exhibits the following properties: $\{\alpha\}_{D}^{25} + 15.4^{\circ}$ (0.72 in CHCl₃); IR, characteristic bands at 1650 and 875 cm⁻¹ (exocyclic = CH₂); NMR^{*}, 5.54 m (2H, =CH₂), 8.91 s and 9.14 s (each 3H, geminal dimethyl group), 9.17 d (3H, J 6.5 cps, CH - <u>CH₃</u>).

^{*} NMR spectra are recorded from CDCl solutions (ca 5 %) on a Perkin Elmer Rl2 instrument (60 MHz). Chemical shifts are given³ in τ units (TME, internal standard). The following abbreviations are used: m = multiplet, s = singlet, d = doublet.

The spectral properties of the new sesquiterpene (I) indicated a close structural relationship with (+)- β -cedrene (MS spectra almost identical). On oxidation with osmium tetroxide, the sesquiterpene (I) gave a diol (II), $C_{15}H_{26}O_2$, m.p. 129-130°, $\{\alpha\}_D^{25} + 2.8^\circ$ (c 0.72 in CHCl₃), which on periodate oxidation yielded a norketone (IIIa), $C_{14}H_{22}O$, m.p. 61.5 - 63.5°, $\{\alpha\}_D^{25} - 2.2^\circ$ (c 1.31 in CHCl₃), IR 1710 cm⁻¹ (6-membered ring ketone). Bromination of this norketone (IIIa) gave a mixture of two monobromo derivatives (TLC, silica gel, 30 % ether in light petroleum, R_F 0.67 and 0.59) which were separated by column chromatography. The compound with R_F 0.67 was found to be an "axial" a-bromonorketone (IIIb), $C_{14}H_{21}OBr$, m.p. $87-89^\circ$ $\{\alpha\}_D^{25} - 68.8^\circ$ (c 0.65 in CHCl₃), IR 1710 cm⁻¹ (axial a-bromoketone in 6-membered ring). The other a-bromonorketone (R_F 0.59) was found to be the "equatorial" isomer (IIIc), $C_{14}H_{21}OBr$, m.p. 99-101°, $\{\alpha\}_D^{25} - 2.1^\circ$ (c 0.61 in CHCl₃), IR 1720 cm⁻¹ (equatorial a-bromoketone in 6-membered ring). The two a-bromonorketones could both be dehydrobrominated ($\text{Li}_2\text{CO}_3/\text{DMF}$) to the a, β -unsaturated norketone (IV) $C_{14}H_{20}O$, m.p. 48.5-49°, $\{\alpha\}_D^{25} - 497^\circ$ (c 0.45 in CHCl₃), $\lambda_{\text{max}}^{\text{EtOH}}$ 240 nm (ϵ 8530).

Detailed spectroscopic studies (NMR and MS) and further chemical degradation indicated that the sesquiterpene (I) must be of a new tricyclic type but closely related to $(+)-\beta$ cedrene. The structure of the sesquiterpene was determined by X-ray phase structure determination on the "equatorial" a-bromonorketone (IIIc). The compound (IIIc) crystallizes in space group $\underline{P2}_{1}2_{1}2_{1}$ with four molecules per unit cell. The cell dimensions are $\underline{a} = 12.740$ (3), $\underline{b} = 7.465$ (1), $\underline{c} = 14.335$ (3) Å. The X-ray intensity data were collected on a Siemens automatic diffractometer.

The crystal structure was solved by the heavy atom method. The position of the bromine atom was determined from a three-dimensional Patterson map. Successive use of Fourier and difference Fourier syntheses revealed all the non-hydrogen atoms and anisotropic refinement resulted in an <u>R</u> index of 0.072. At this stage a difference Fourier synthesis was calculated No. 1

and the hydrogen atoms were located and introduced into the least-squares analysis with isotropic temperature factors. The residual was reduced to 0.054 and the average estimated standard deviations in bond distances involving non-hydrogen atoms are 0.01 Å.

Fig. 1 shows a perspective view of the molecule. The two five-membered rings are in a trans-configuration resulting in a considerable internal strain, <u>cf.also</u> bond lengths C(1)-C(2) and C(6)-C(7).

Fig. 1 A perspective view and the bond lengths of the α -bromonorketone (IIIc)

The absolute configuration of the sesquiterpene (I) follows from CD data of the nor-

ketone (IIIa) which exhibits a negative CD due to the $n \rightarrow \pi^*$ transition ((0)₂₉₅ - 2267) and of the "axial" α -bromonorketone (IIIb) exhibiting a weak negative CD ((0)₃₂₄ - 1979). According to the α -haloketo rule (<u>cf.</u> ref. 5) the axial bromo-substituent of compound (IIIb) will make a positive contribution to the CD thus cancelling some of the negative overall effect of the ring system. The strong negative CD ((0)₂₉₅ - 5019) of the "equatorial" α -bromonorketone (IIIc) may be explained by the contributions from the ring system and from the bromosubstituent

Diagram VI

which is in a negative octant (cf. octant diagram V).

The α,β -unsaturated norketone (IV) exhibits strong negative CD minima due to the $n \neq \pi^*$ ($(\Theta)_{374} = 512$, $(\Theta)_{357} = 1255$, $(\Theta)_{343} = 1439$, $(\Theta)_{329} = 976$) and $\pi \neq \pi^*$ ($(\Theta)_{236} = 3793$. $(\Theta)_{206} = 4694$) transitions. These data are in agreement with those predicted^{6,7} from the octant diagram (VI).

It is of interest to note that the biogenesis of $(-)-\alpha$ -cedrene and of the new sesquiterpene, I, (+)-2,5-diepi- β -cedrene, may proceed via a common precursor (VII) which in the two conformations (VIIa and b) will cyclise to the cedrane and 2,5-diepicedrane skeletons, respectively.

REFERENCES

- 1. J. Kawamura, Bull. For. Exp. Sta. Maguro 31, 93 (1931).
- 2. M. Sumimoto, <u>Tetrahedron</u> 19, 643 (1963).
- 3. M. Sumimoto, Y. Tanaka and K. Matsufuji, Chem. Ind. (London), 1963, 1928.
- 4. H. Erdtman, T. Norin, M. Sumimoto, and A. Morrison, <u>Tetrahedron Letters</u>, <u>1964</u>, 3879.
- 5. C. Djerassi and W. Klyne, J. Am. Chem. Soc. 72, 1506 (1957).
- 6. G. Snatzke, Tetrahedron 21, 413 (1965).
- 7. G. Snatzke, Tetrahedron 21, 421 (1965).